Modern healthcare is fragmented. Understanding helps connect the dots.

0

Your Cart is Empty

Library

Concussion Patient’s Guide — References

This page lists the academic and web-based sources that informed the Concussion Patient’s Guide. It is provided for those who wish to review the references used within the guide.

Web Resources:

Academic Resources:

  • Hutchison, M.G., Schweizer, T.A., Tam, F., Graham, S.J., and Comper, P., 2014. fMRI and brain activation after sport concussion: A tale of two cases. Frontiers in Neurology, [online] 5. Available at: https://www.frontiersin.org/articles/10.3389/fneur.2014.00046/full [Accessed 1 Feb. 2025].
  • Johnson, C.D., Green, B.N., Nelson, R.C., Moreau, B., and Nabhan, D., 2013. Chiropractic and concussion in sport: a narrative review of the literature. The Journal of Chiropractic Medicine, 12(4), pp.216–229. Available at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3838721/ [Accessed 1 Feb. 2025].
  • Germann, D., Marshall, C., and Kazemi, M., 2020. Multi-modal management of sport and non-sport related concussion by chiropractic sports specialists: a case series. Journal of the Canadian Chiropractic Association, 64(3), pp.214–226. Available at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7815178/ [Accessed 1 Feb. 2025].
  • Barrett, E.C., McBurney, M.I., and Ciappio, E.D., 2014. ω-3 Fatty Acid Supplementation as a Potential Therapeutic Aid for the Recovery from Mild Traumatic Brain Injury/Concussion. Advances in Nutrition, 5(3), pp.268–277. Available at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4013179/ [Accessed 1 Feb. 2025].
  • Heileson, J.L., Anzalone, A.J., Carbuhn, A.F., Askow, A.T., Stone, J.D., Turner, S.M., Hillyer, L.M., Ma, D.W.L., Luedke, J.A., Jagim, A.R., and Oliver, J.M., 2021. The effect of omega-3 fatty acids on a biomarker of head trauma in NCAA football athletes: a multi-site, non-randomized study. Journal of the International Society of Sports Nutrition, 18(1), p.65. Available at: https://jissn.biomedcentral.com/articles/10.1186/s12970-021-00461-1 [Accessed 1 Feb. 2025].
  • Arabi, S.M., Sedaghat, A., Ehsaei, M.R., Safarian, M., Ranjbar, G., Rezaee, H., Rezvani, R., Tabesh, H., and Norouzy, A., 2020. Efficacy of high-dose versus low-dose vitamin D supplementation on serum levels of inflammatory factors and mortality rate in severe traumatic brain injury patients: study protocol for a randomized placebo-controlled trial. Trials, 21(1), p.685. Available at: https://trialsjournal.biomedcentral.com/articles/10.1186/s13063-020-04622-6 [Accessed 1 Feb. 2025].
  • Denniss, R.J. and Barker, L.A., 2023. Brain Trauma and the Secondary Cascade in Humans: Review of the Potential Role of Vitamins in Reparative Processes and Functional Outcome. Behavioral Sciences, 13(5), p.388. Available at: https://www.mdpi.com/2076-328X/13/5/388 [Accessed 1 Feb. 2025].
  • Khalili, H., Abdollahifard, S., Niakan, A., and Aryaie, M., 2022. The effect of vitamins C and E on clinical outcomes of patients with severe traumatic brain injury: A propensity score matching study. Surgical Neurology International, 13, p.548. Available at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9805612/ [Accessed 1 Feb. 2025].
  • Institute of Medicine (US) Committee on Nutrition, Trauma, and the Brain, 2011. Antioxidants. In: Nutrition and Traumatic Brain Injury: Improving Acute and Subacute Health Outcomes in Military Personnel. Washington (DC): National Academies Press (US). Available at: https://www.ncbi.nlm.nih.gov/books/NBK209332/ [Accessed 1 Feb. 2025].
  • Standiford, L., O'Daniel, M., Hysell, M., and Trigger, C., 2021. A randomized cohort study of the efficacy of PO magnesium in the treatment of acute concussions in adolescents. The American Journal of Emergency Medicine, 44, pp.419–422. Available at: https://pubmed.ncbi.nlm.nih.gov/33243533/ [Accessed 1 Feb. 2025].
  • Institute of Medicine (US) Committee on Nutrition, Trauma, and the Brain, 2011. Magnesium. In: Nutrition and Traumatic Brain Injury: Improving Acute and Subacute Health Outcomes in Military Personnel. Washington (DC): National Academies Press (US). Available at: https://www.ncbi.nlm.nih.gov/books/NBK209305/ [Accessed 1 Feb. 2025].
  • Wu, F., Xu, K., Liu, L., Zhang, K., Xia, L., Zhang, M., Teng, C., Tong, H., He, Y., Xue, Y., Zhang, H., Chen, D., and Hu, A., 2019. Vitamin B12 enhances nerve repair and improves functional recovery after traumatic brain injury by inhibiting ER stress-induced neuron injury. Frontiers in Pharmacology, 10, p.406. Available at: https://pubmed.ncbi.nlm.nih.gov/31105562/ [Accessed 1 Feb. 2025].
  • Hoane, M.R., Akstulewicz, S.L., and Toppen, J., 2003. Treatment with vitamin B3 improves functional recovery and reduces GFAP expression following traumatic brain injury in rats. Journal of Neurotrauma, 20(11), pp.1189–1199. Available at: https://pubmed.ncbi.nlm.nih.gov/14651806/ [Accessed 1 Feb. 2025].
  • Wu, A., Ying, Z., and Gomez-Pinilla, F., 2006. Dietary curcumin counteracts the outcome of traumatic brain injury on oxidative stress, synaptic plasticity, and cognition. Experimental Neurology, 197(2), pp.309–317. Available at: https://pubmed.ncbi.nlm.nih.gov/16364299/ [Accessed 1 Feb. 2025].
  • Zhu, H., Bian, C., Yuan, J., Chu, W., Xiang, X., Chen, F., Wang, C., Feng, H., and Lin, J., 2014. Curcumin reduces brain inflammation and helps protect brain cells after an injury. Journal of Neuroinflammation, 11(1), p.59. Available at: https://jneuroinflammation.biomedcentral.com/articles/10.1186/1742-2094-11-59 [Accessed 1 Feb. 2025].
  • Cope, E.C., Morris, D.R., Scrimgeour, A.G., VanLandingham, J.W., and Levenson, C.W., 2012. Zinc supplementation provides behavioral resiliency in a rat model of traumatic brain injury. Physiology & Behavior, 106(2), pp.248–255. Available at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3801180/ [Accessed 1 Feb. 2025].
  • Levenson, C.W., 2020. Zinc and Traumatic Brain Injury: From Chelation to Supplementation. Medical Sciences, 8(3), p.36. Available at: https://pubmed.ncbi.nlm.nih.gov/32824524/ [Accessed 1 Feb. 2025].
  • Hoffer, M.E., Balaban, C., Slade, M.D., Tsao, J.W., and Hoffer, B., 2013. Amelioration of acute sequelae of blast induced mild traumatic brain injury by N-acetyl cysteine: a double-blind, placebo controlled study. PLoS One, 8(1), p.e54163. Available at: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0054163 [Accessed 1 Feb. 2025].
  • McPherson, R.A., Mangram, A.J., Barletta, J.F., and Dzandu, J.K., 2022. N-acetylcysteine is associated with reduction of postconcussive symptoms in elderly patients: a pilot study. Journal of Trauma and Acute Care Surgery, 93(5), pp.644–649. Available at: https://pubmed.ncbi.nlm.nih.gov/35393384/ [Accessed 1 Feb. 2025].
  • Dean, P.J.A., Arikan, G., Opitz, B., and Sterr, A., 2017. Potential for use of creatine supplementation following mild traumatic brain injury. Concussion, 2(1), p.CNC3. Available at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6094347/ [Accessed 1 Feb. 2025].
  • Sakellaris, G., Kotsiou, M., Tamiolaki, M., Kalostos, G., Tsapaki, E., Alevizou, A., and Karkavelas, G., 2006. Prevention of complications related to traumatic brain injury in children and adolescents with creatine administration: an open label randomized pilot study. Journal of Trauma, 61(2), pp.322–329. Available at: https://pubmed.ncbi.nlm.nih.gov/16917445/ [Accessed 1 Feb. 2025].
  • Candow, D.G., Forbes, S.C., Ostojic, S.M., Prokopidis, K., Stock, M.S., Harmon, K.K., and Faulkner, P., 2023. 'Heads Up' for Creatine Supplementation and its Potential Applications for Brain Health and Function. Sports Medicine, 53, pp.49–65. Available at: https://link.springer.com/article/10.1007/s40279-023-01870-9 [Accessed 1 Feb. 2025].
  • Turner, C.E. and Gant, N., 2014. Potential for use of creatine supplementation following mild traumatic brain injury. Concussion, 1(1), p.CNC3. Available at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6094347/ [Accessed 1 Feb. 2025].
  • Matthews, R.T., Yang, L., Browne, S., Baik, M., and Beal, M.F., 1998. Coenzyme Q10 administration increases brain mitochondrial concentrations and exerts neuroprotective effects. Proceedings of the National Academy of Sciences, 95(15), pp.8892–8897. Available at: https://pubmed.ncbi.nlm.nih.gov/9671775/ [Accessed 1 Feb. 2025].
  • Kalayci, M., Unal, M.M., Gul, S., Acikgoz, S., Kandemir, N., Hanci, V., Edebali, N., and Acikgoz, B., 2011. Effect of Coenzyme Q10 on ischemia and neuronal damage in an experimental traumatic brain-injury model in rats. BMC Neuroscience, 12, p.75. Available at: https://bmcneurosci.biomedcentral.com/articles/10.1186/1471-2202-12-75 [Accessed 1 Feb. 2025].
  • Fernández-Portero, C., Amián, J.G., de la Bella, R., López-Lluch, G., and Alarcón, D., 2023. Coenzyme Q10 levels associated with cognitive functioning and executive function in older adults. The Journals of Gerontology: Series A, 78(1), pp.1–8. Available at: https://pubmed.ncbi.nlm.nih.gov/35908233/ [Accessed 1 Feb. 2025].
  • Stough, C., Nankivell, M., Camfield, D.A., Perry, N.L., Pipingas, A., Macpherson, H., Wesnes, K., Ou, R., Hare, D., de Haan, J., Head, G., Lansjoen, P., Langsjoen, A., Tan, B., Pase, M.P., King, R., Rowsell, R., Zwalf, O., Rathner, Y., Cooke, M., and Rosenfeldt, F., 2019. CoQ10 and cognition: a review and study protocol for a 90-day randomized controlled trial investigating the cognitive effects of ubiquinol in the healthy elderly. Frontiers in Aging Neuroscience, 11, p.103. Available at: https://www.frontiersin.org/articles/10.3389/fnagi.2019.00103/full [Accessed 1 Feb. 2025].
  • Clark, J.E. and Sirois, E., 2020. The possible role of hydration in concussions and long-term symptoms of concussion for athletes: A review of the evidence. Journal of Concussion, 4, p.2059700220939404. Available at: https://journals.sagepub.com/doi/10.1177/2059700220939404 [Accessed 1 Feb. 2025].
  • Manley, G.T., et al., 2017. Long-term cognitive and neuropsychiatric consequences of repetitive concussion and head-impact exposure. Journal of Athletic Training, 52(3), pp.309–317. Available at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5384827/ [Accessed 1 Feb. 2025].
  • Knapik, J.J., Hoedebecke, B.L., Rogers, G.G., Sharp, M.A., and Marshall, S.W., 2019. Effectiveness of mouthguards for the prevention of orofacial injuries and concussions in sports: systematic review and meta-analysis. Sports Medicine, 49(8), pp.1217–1232. Available at: https://pubmed.ncbi.nlm.nih.gov/31148073/ [Accessed 1 Feb. 2025].
  • Mihalik, J.P., Guskiewicz, K.M., Marshall, S.W., and Greenwald, R.M., 2007. Does cervical muscle strength in youth ice hockey players affect head impact biomechanics? Clinical Journal of Sport Medicine, 17(6), pp.518–521. Available at: https://exss.unc.edu/wp-content/uploads/sites/779/2013/01/Mihalik_2007_DentTraum_Effectiveness_mouthguards.pdf [Accessed 1 Feb. 2025].
  • Scorza, K.A. and Cole, W., 2019. Current concepts in concussion: Initial evaluation and management. American Family Physician, 99(7), pp.426-434. Available at: https://www.aafp.org/pubs/afp/issues/2019/0401/p426.html [Accessed 1 Feb. 2025].
  • McKee, A.C., Stein, T.D., Kiernan, P.T., and Alvarez, V.E., 2015. The neuropathology of chronic traumatic encephalopathy. Brain Pathology, 25(3), pp.350–364. Available at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4526170/ [Accessed 1 Feb. 2025].
  • Keenan, A. and Mahaffey, B., 2017. Concussion care: Moving beyond the standard. Missouri Medicine, 114(5), pp.340–343. Available at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6140182/ [Accessed 1 Feb. 2025].
  • Thomas, K.D., Lombard, Z.K., and Shadiack, A.L., 2023. Osteopathic manipulative treatment for concussions and postconcussive syndrome in athletes: a literature review. Journal of Osteopathic Medicine, 123(8), pp.395–403. Available at: https://pubmed.ncbi.nlm.nih.gov/37283218/ [Accessed 1 Feb. 2025].
  • Yao, S.C., Zwibel, H., Angelo, N., Leder, A., and Mancini, J., 2020. Effectiveness of osteopathic manipulative medicine vs concussion education in treating student athletes with acute concussion symptoms. Journal of the American Osteopathic Association. Available at: https://pubmed.ncbi.nlm.nih.gov/32766808/ [Accessed 1 Feb. 2025].
  • Lee, H., Song, M., Shin, S., Kim, Y., Oh, H., and Kim, J., 2019. The impact of vitamin D deficiency on the acute and long-term outcomes of patients with traumatic brain injury. Brain Injury, 33(5), pp.562-568. Available at: https://pubmed.ncbi.nlm.nih.gov/30904798/ [Accessed 1 Feb. 2025].
  • Zhu, H., Bian, C., Yuan, J., Chu, W., Xiang, X., Chen, F., Wang, C., Feng, H., and Lin, J., 2014. Curcumin attenuates acute inflammatory injury in experimental traumatic brain injury. Journal of Neuroinflammation, 11(1), p.59. Available at: https://jneuroinflammation.biomedcentral.com/articles/10.1186/1742-2094-11-59 [Accessed 1 Feb. 2025].
  • Candow, D.G., Forbes, S.C., Ostojic, S.M., Prokopidis, K., Stock, M.S., Harmon, K.K., and Faulkner, P., 2023. “Heads up” for creatine supplementation and its potential applications for brain health and function. Sports Medicine, 53, pp.49–65. Available at: https://link.springer.com/article/10.1007/s40279-023-01870-9 [Accessed 1 Feb. 2025].
  • Dean, P.J.A., Arikan, G., Opitz, B., and Sterr, A., 2017. Potential for use of creatine supplementation following mild traumatic brain injury. Concussion, 2(2). Available at: https://concussion.scholasticahq.com/article/118013-potential-for-use-of-creatine-supplementation-following-mild-traumatic-brain-injury [Accessed 1 Feb. 2025].
  • Allan, K., Hayes, K., Thomas, M., and Barnard, K., 2019. Coenzyme Q10 supplementation in traumatic brain injury: a scoping review protocol. JBI Database of Systematic Reviews and Implementation Reports, 17(9), pp.1901–1908. Available at: https://pubmed.ncbi.nlm.nih.gov/31145191/ [Accessed 1 Feb. 2025].